3. Monitoraggio e classificazione: acque superficiali.

3.1 Organizzazione del monitoraggio

Il monitoraggio si articola in una fase conoscitiva iniziale che ha come scopo la **prima** classificazione dello stato di qualità ambientale dei corpi idrici ed in una fase a regime in cui viene effettuato un monitoraggio volto a verificare il raggiungimento ovvero il mantenimento dell'obiettivo di qualità «buono» di cui all'articolo 4.

3.1.1 Fase conoscitiva

La fase conoscitiva iniziale ha la durata di 24 mesi ed ha come finalità la classificazione dello stato di qualità di ciascun corpo idrico; in base ad esso le autorità competenti definiscono, nell'àmbito del piano di tutela, le misure necessarie per il raggiungimento o il mantenimento dell'obiettivo di qualità ambientale.

La fase conoscitiva iniziale, ha altresì lo scopo di raccogliere tutte le informazioni utili alla valutazione degli elementi biologici e idromorfologici necessari a definire più compiutamente lo stato ecologico dei corpi idrici superficiali, nonché per valutare le informazioni relative alla contaminazione da microinquinanti dei sedimenti e del biota, in particolare per quanto riguarda le acque costiere e le acque di transizione e di laghi.

Le informazioni pregresse non antecedenti il 1997, possono essere utilizzate - se compatibili con quelle richieste nel presente allegato - in sostituzione o integrazione delle analisi previste nella fase iniziale del monitoraggio per l'attribuzione dello stato di qualità. Se da tali informazioni pregresse emerge uno stato di qualità ambientale «buono» o «elevato» vale quanto detto nel successivo punto 3.1.2 in relazione alla frequenza del campionamento e al numero delle stazioni.

3.1.2 Fase a regime

Se i corpi idrici hanno raggiunto l'obiettivo «Buono» o «Elevato», il monitoraggio può essere ridotto ai soli parametri riportati in tabella 4, per i corsi d'acqua, in tabella 10, per i laghi, ed in tabella 13, per le acque marino costiere e per le acque di transizione. L'autorità competente, in relazione allo stato delle acque superficiali, può variare la frequenza dei campionamenti e il numero delle stazioni della rete di rilevamento.

Le autorità competenti armonizzano e ricercano la miglior integrazione possibile tra le diverse iniziative di controllo delle acque (monitoraggio per la balneazione, per la produzione di acqua potabile, per la vita dei pesci, ed altri), al fine di ottimizzare l'impiego di risorse umane e finanziarie.

Deve inoltre essere predisposto, presso ogni ARPA, o comunque presso ogni regione in attesa che venga costituita l'ARPA, un sistema di pronto intervento

in grado di monitorare gli effetti ed indagare sulle cause di fenomeni acuti di inquinamento causati da episodi accidentali o dolosi.

3.2 Corsi d'acqua

3.2.1 Indicatori di qualità e analisi da effettuare

Ai fini della prima classificazione della qualità dei corsi d'acqua vanno eseguite determinazioni sulla matrice acquosa e sul biota; qualora ne ricorra la necessità, così come indicato successivamente nei punti relativi agli specifici corpi idrici, tali determinazioni possono essere integrate da indagini sui sedimenti e da test di tossicità.

Le determinazioni necessarie per il sistema di classificazione sono condotte sui campioni e con le frequenze indicate nella sezione 3.2.2.

3.2.1.1 Acque

Le determinazioni sulla matrice acquosa riguardano due gruppi di parametri, quelli di base e quelli addizionali.

I parametri di base, riportati in tabella 4, riflettono le pressioni antropiche tramite la misura del carico organico, del bilancio dell'ossigeno, dell'acidità, del grado di salinità e del carico microbiologico nonché le caratteristiche idrologiche del trasporto solido. I parametri definiti macrodescrittori e indicati con (o) nella tabella 4 vengono utilizzati la classificazione; gli altri parametri servono a fornire informazioni di supporto per la interpretazione delle caratteristiche di qualità e di vulnerabilità del sistema nonché per la valutazione dei carichi trasportati.

La determinazione dei parametri di base è obbligatoria.

I parametri addizionali sono relativi ai microinquinanti organici ed inorganici; quelli di più ampio significato ambientale sono riportati nella tabella 1.

La selezione dei parametri da esaminare è effettuata dall'autorità competente caso per caso, in relazione alle criticità consequenti agli usi del territorio.

Le analisi dei parametri addizionali vanno effettuate ove l'Autorità competente lo ritenga necessario e comunque nel caso in cui:

- a seguito delle attività delle indagini conoscitive di cui all'allegato 3 si individuino sorgenti puntuali e diffuse o si abbiano informazioni pregresse e attuali su sorgenti puntuali e diffuse che apportino una o più specie di tali inquinanti nel corpo idrico;
- dati recenti dimostrino livelli di contaminazione, da parte di tali sostanze e delle acque e del biota o segni di incremento delle stesse nei sedimenti.

Tabella 4 - Parametri di base (con (o) sono indicati i parametri macrodescrittori utilizzati per la classificazione)

Portata (m3/s)	Ossigeno disciolto (mg/L) ** (o)
рН	BOD5 (O2 mg/L) ** (o)
Solidi sospesi (mg/L)	COD (O2 mg/L) ** (o)
Temperatura (°C)	Ortofosfato (P mg/L) *
Conducibilità (µS/cm (20 °C)) **	Fosforo Totale (P mg/L) ** (o)
Durezza (mg/L di CaCO3)	Cloruri (Cl- mg/L) *
Azoto totale (N mg/L) **	Solfati (SO4mg/L) *
Azoto ammoniacale (N mg/L) * (o)	Escherichia coli (UFC/100 mL (o)
Azoto nitrico (N mg/L) * (o)	

^{*} Determinazione sulla fase disciolta

3.2.1.2 Biota

Le determinazioni sul biota riguardano due gruppi di analisi:

Analisi di base: gli impatti antropici sulle comunità animali dei corsi d'acqua vengono valutati attraverso l'indice Biotico Esteso (I.B.E.). Tale analisi va eseguita obbligatoriamente con le cadenze indicate al punto 3.2.2.2.

Analisi supplementari: non obbligatorie, da eseguire a giudizio dell'autorità che effettua il monitoraggio, per una analisi più approfondita delle cause di degrado del corpo idrico. A tal fine possono essere effettuati saggi biologici finalizzati alla evidenziazione di effetti a breve o lungo termine. Tra questi in via prioritaria si segnalano:

- test di tossicità su campioni acquosi concentrati su Daphnia magna;
- test di mutagenicità e teratogenesi su campioni acquosi concentrati;
- test di crescita algale;
- test su campioni acquosi concentrati con batteri bioluminescenti;

In aggiunta si segnala l'opportunità di effettuare determinazioni di accumulo di contaminanti prioritari (PCB, DDT e Cd) su tessuti muscolari di specie ittiche residenti o su organismi macrobentonici.

3.2.1.3 Sedimenti

^{**} determinazione sul campione tal quale

Le analisi sui sedimenti sono da considerarsi come analisi supplementari eseguite per avere, se necessario, ulteriori elementi conoscitivi utili a determinare le cause di degrado ambientale di un corso d'acqua.

Le autorità preposte al monitoraggio devono, nel caso, selezionare i parametri da ricercare, prioritariamente tra quelli riportati nella tabella 5 e, se necessario, includerne altri, considerando le condizioni geografiche ed idromorfologiche del corso d'acqua, i fattori di pressione antropica cui è sottoposto e la tipologia degli scarichi immessi.

Le determinazioni sui sedimenti vanno fatte in particolare per ricercare quegli inquinanti che presentano una maggior affinità con i sedimenti rispetto che alla matrice acquosa.

Qualora sia necessaria un'analisi più approfondita volta a evidenziare gli effetti tossici a breve o a lungo termine si potranno effettuare dei saggi biologici sui sedimenti. Gli approcci possibili sono molteplici e riconducibili a tre soluzioni fondamentali:

- saggi su estratti di sedimento
- saggi sul sedimento in toto
- saggi su acqua interstiziale.

Ogni soluzione offre informazioni peculiari e pertanto l'applicazione congiunta di più tipi di saggio spesso garantisce le informazioni volute. Possono essere utilizzati organismi acquatici, sia in saggi acuti che (sub) cronici. In via prioritaria si segnalano: Oncorhynchus mykiss, Daphnia magna, Ceriodaphnia dubia, Chironomus tentans e C.riparius, Selenastrum capricornutum e batteri luminescenti.

Tabella 5 - Microinquinanti e sostanze pericolose di prima priorità da ricercare nei sedimenti

Inorganici e Metalli	Organici [1]
Arsenico	Policlorobifenili (PCB)
Cadmio	Diossine (TCDD)
Zinco	Idrocarburi policiclici aromatici (IPA)
Cromo totale	Pesticidi organoclorurati
Mercurio	
Nichel	
Piombo	
Rame	

[1] Si consiglia la determinazione dei seguenti inquinanti organici:

Idrocarburi Policiclici Aromatici prioritari: Naftalene, Acenaftene, Fenantrene*, Fluorantene, Benz(a)antracene**, Crisene**, Benzo(b)fluorantene, Benzo(k)fluorantene**, Benzo(a)pirene**, Dibenzo(a,h)antracene, Benzo(g,h,i)perilene*, Antracene, Pirene Indeno(1,2,3,c,d,)pirene*, Acenaftilene, Fluorene, (*) indica le molecole con presunta attività cancerogena, (**) quelle che hanno attività cancerogena.

Composti organoclorurati prioritari: DDT e analoghi (DD's); Isomeri dell'Esaclorocicloesano (HCH's); Drin's; Esaclorobenzene, PCB (i PCB più rilevanti sotto il profilo ambientale consigliati anche in sede internazionale (EPA, UNEP) sono: PCB's; PCB 52, PCB 77, PCB 81, PCB 128, PCB 138, PCB 153, PCB 169).

3.2.2 Campionamento

3.2.2.1 Criteri per la scelta delle stazioni di prelievo

Per ogni corso d'acqua naturale viene definito un numero minimo di stazioni di prelievo, come indicato nella seguente tabella 6; tale numero è in funzione della tipologia del corso d'acqua e della superficie del bacino imbrifero.

Le Autorità competenti possono aumentare il numero delle stazioni in presenza di particolari valori naturalistici o paesaggistici o per particolari utilizzazioni in atto o in tutte le situazioni in cui questo sia ritenuto necessario.

Tabella 6 - Numero stazioni nei corsi d'acqua naturali

Area del bacino (km2)	Numero stazioni	
	Corsi d'acqua di 1º ordine	Corsi d'acqua di 2º ordine e superiore
200-400	1	
401-1000	2	1
1001-5000	3	2
5001-10.000	5	4
10.001-25.000	6	-
25.001-50.000	8	-
> 50.001	10	_

Le stazioni di prelievo sui corsi d'acqua sono in linea di massima distribuite lungo l'intera asta del corso d'acqua, tenendo conto della presenza degli insediamenti urbani, degli impianti produttivi e degli apporti provenienti dagli affluenti.

I punti di campionamento sono fissati a una distanza dalle immissioni sufficiente ad avere la garanzia del rimescolamento delle acque al fine di valutare la qualità del corpo recettore e non quella degli apporti.

In ogni caso deve essere posta una stazione di prelievo nella sezione di chiusura di ogni corpo idrico significativo. La misura di portata può essere effettuata in modo puntuale in corrispondenza del punto di campionamento e contestualmente allo stesso o desunta dai valori di portata rilevati in continuo presso stazioni fisse.

Per quanto riguarda l'analisi dei sedimenti i punti di campionamento sono individuati prioritariamente in corrispondenza delle stazioni definite per l'analisi delle acque, compatibilmente con le caratteristiche granulometriche del substrato di fondo.

3.2.2.2 Frequenza dei campionamenti

Fase iniziale del monitoraggio

Acque:

la misura dei parametri chimici, fisici, microbiologici e idrologici di base e di quelli relativi ai parametri addizionali, quando necessari, deve essere eseguita una volta al mese fino al raggiungimento dell'obiettivo di qualità.

Sedimenti: una volta all'anno, durante i periodi di magra (e comunque lontano da eventi di piena), ovvero durante i periodi favorevoli alla deposizione del materiale sospeso.

Biota: l'I.B.E. va misurato stagionalmente (4 volte all'anno);

I test biologici addizionali e quelli di bioaccumulo, quando richiesti, vanno eseguiti nei periodi di maggiore criticità per il sistema.

Fase a regime

La frequenza di campionamento si mantiene inalterata fino al raggiungimento dell'obiettivo di qualità ambientale di cui all'articolo 4. Raggiunto tale obiettivo, la frequenza di campionamento può essere ridotta dall'autorità competente ma non deve comunque essere inferiore a quattro volte all'anno per i parametri di base di cui alla tabella 4 e inferiore a due per l'I.B.E.. Per la misura di portata deve essere garantito per ogni stazione idrometrica un numero annuo di determinazioni sufficiente a mantenere aggiornata la scala di deflusso.

3.2.3 Classificazione

La classificazione dello stato ecologico (tabella 8), viene effettuata incrociando il dato risultante dai macrodescrittori con il risultato dell'I.B.E., attribuendo alla

sezione in esame o al tratto da essa rappresentato il risultato peggiore tra quelli derivati dalle valutazioni relative ad I.B.E. e macrodescrittori.

Per la valutazione del risultato dell'I.B.E. si considera il valore medio ottenuto dalle analisi eseguite durante il periodo di misura per la classificazione. Per il calcolo della media, considerata la possibilità di classi intermedie (es. 8/9 o 9/8), si segue il seguente procedimento:

per la classe 10/9 si attribuisce il valore 9,6, per quella 9/10 il valore 9,4 per 9/8 il valore 8,6, per 8/9 il valore 8,4, e così per le altre classi.

- per ritrasformare in valori di I.B.E. la media si procederà in modo contrario avendo cura di assegnare la classe più bassa nel caso di frazione di 0,5: esempio 8,5 = 8/9, 6,5 = 6/7 ecc.

Il livello di qualità relativa ai macrodescrittori viene attribuito utilizzando la tabella 7 e seguendo il procedimento di seguito descritto:

- sull'insieme dei risultati ottenuti durante la fase di monitoraggio bisogna calcolare, per ciascuno dei parametri contemplati, il 75° percentile (per quanto riguarda in primo indicatore il valore del 75° percentile va riferito al valore assoluto della differenza dal 100%);
- si individua la colonna in cui ricade il risultato ottenuto, individuando così il livello di inquinamento da attribuire a ciascun parametro e, conseguentemente, il suo punteggio;
- si ripete tale operazione di calcolo per ciascun parametro della tabella e quindi si sommano tutti i punteggi ottenuti;
- si individua il livello di inquinamento espresso dai macrodescrittori in base all'intervallo in cui ricade il valore della somma dei livelli ottenuti dai diversi parametri, come indicato nell'ultima riga della tabella 7.

Ai fini della classificazione devono essere disponibili almeno il 75% dei risultati delle misure esequibili nel periodo considerato.

Lo stesso parametro statistico del 75° percentile viene usato per la eventuale valutazione dello stato di qualità chimica concernente gli inquinanti chimici indicati in tabella 1.

Tabella 7 - Livello di inquinamento espresso dai macrodescrittori.

Parametro	Livello 1	Livello 2	Livello 3	Livello 4	Livello 5
100-OD (% sat.) (*)	≤ 10 (#)	≤ 20	≤ 30	≤ 50	> 50
BOD5 (O2 mg/L)	< 2,5	≤ 4	≤ 8	≤ 15	> 15

COD O2 mg/L)	< 5	≤ 10	≤ 15	≤ 25	> 25
NH4 (N mg/L)	< 0,03	≤ 0,10	≤ 0,50	≤ 1,50	> 1,50
NO3 (N mg/L)	< 0,3	≤ 1,5	≤ 5,0	≤ 10,0	> 10,0
Fosforo totale (P mg/L)	< 0,07	≤ 0,15	≤ 0,30	≤ 0,60	> 0,60
Escherichia coli (UFC/100 mL)	< 100	≤ 1.000	≤ 5.000	≤ 20.000	> 20.000
Punteggio da attribuire per ogni parametro analizzato (75° percentile del periodo di rilevamento)	80	40	20	10	5
LIVELLO DI INQUINAMENTO DAI MACRODESCRITTORI	480-560	240-475	120-235	60-115	< 60

^(*) la misura deve essere effettuata in assenza di vortici; il dato relativo al deficit o al surplus deve essere considerato in valore assoluto;

^(#) in assenza di fenomeni di eutrofia;